GlobalMapper LIDAR Module

LIDAR MODULE HIGHLIGHTS

Pixels-to-Points Tool

- Point cloud creation from drone/UAV images
- 3D mesh generation

Manual Point Classification Tools

Automatic Point Classification Tools

- Ground
- Noise
- Buildings
- Poles
- Trees
- Above ground utility cables
- Automatic & Custom Feature Extraction
 - Above ground utility cables and poles
 - Buildings
 - Trees

Point Cloud Thinning Point Filtering Options LiDAR Quality Control for Vertical Accuracy Proximity & Encroachment Querying Point Cloud Colorization Options

- From raster imagery
- By point type/class/value

Path Profile (side-view) Editing Elevation Grid Creation

Advanced point cloud and LiDAR processing

Global Mapper is a robust and inexpensive GIS application that combines a comprehensive array of data processing tools with access to an unparalleled variety of data formats.

The *LiDAR Module* is an optional add-on to Global Mapper that provides advanced point cloud processing tools, including: *Pixels-to-Points*[™] for photogrammetric point cloud creation from overlapping drone/UAV images; automatic point cloud classification; feature extraction; hydroflattening; and more.

LiDAR points representing powerlines can be automatically reclassified.

The LiDAR Module is embedded in the current release of Global Mapper and is activated in the License Manager. A 14-day free trial is available for evaluation.

The Pixels-to-Points tool offers the ability to photogrammetrically create orthoimages, point clouds, and 3D meshes from drone-collected images.

Blue Marble GEOGRAPHICS Mind the gap between world and map TM 800-25CARON (252-2766) sales@caroneast.com

Software Comparison

Read/Write support for LAS/LAZ files with over one billion points [64-bit only]	•	•
Pixels-to-Points for creating a 3D point cloud from drone/UAV images		•
3D Mesh creation from selected points		•
Orthoimage creation from selected points		•
Option to render point cloud by elevation values	•	•
Option to render point cloud by height above ground		•
Option to render point cloud by RGB values	•	•
One-button point cloud colorization from underlying imagery		•
Option to render point cloud by LiDAR point attributes (classification, intensity, etc.)	•	•
Option to render point cloud by the difference in height between the first and last return	•	•
Option to render point cloud by calculated NDVI or NDWI value (requires NIR attribute)	•	•
Option to render point cloud by point density		•
Ability to interactively change rendering method from Toolbar		•
Ability to crop point clouds	•	•
Ability to manually edit or delete points	•	•
Ability to filter by LiDAR point classes	•	•
Ability to filter selected LiDAR points by elevation/color range		•
Ability to manually adjust elevations in entire point cloud		•
Ability to display and edit LiDAR points in Path Profile (cross-sectional view)		•
One-button point reclassification tools		•
Automatic ground point classification		•
Automatic identification of noise points		•
Automatic reclassification of building, tree, poles, and powerline points		•
Building, tree, and powerline extraction from classified LiDAR points		•
Custom 3D digitizing and feature extraction using perpendicular path profile views		•
Ability to reproject LiDAR point clouds	•	•
Ability to transform point cloud coordinates (including rectification)		•
LiDAR QC to vertically correct LIDAR elevations from ground control points		•
Option to spatially sort point clouds for faster display and analysis		•
Elevation grid creation using Triangulated Irregular Network (TIN) method	•	•
Elevation grid creation using local minimum (DTM) or maximum (DSM) elevation		•
Elevation grid creation using local average elevation		•
Option to filter points applied in gridding process		•
Ability to create grid from heights above ground		•
Ability to create grid based on intensity, classification, or color values		•
Ability to calculate statistics for point cloud data using a script		•
Option to export LiDAR points within elevation range		•
Option to export LAS files using height above ground instead of elevation		•

www.caroneast.com